
©2015, Regis University

Regis University CC&IS – CS370

Programming Assignment 5

Documentation Due by: midnight Sunday of Week 5

Programming Due by: midnight Sunday of Week 6

Introduction

For this assignment you will create a program that allows a user to select a number base (in the range of 2

to 16, inclusive), enter digits for the number base, validate each digit as it is entered, and display the

resulting value in base 2, 8, 10 and 16.

Requirements

Create a program that:

 Has six user-defined procedures (UDPs):

o IsLegal – this UDP shall:

 Accept an ASCII value in one register.

 Accept a number base value in another register.

 Determines whether the ASCII value is valid for the base.

 Use the AsciiToDigit procedure

 Return 1 if the value is valid.

 Return 0 if the value is not valid.

o AsciiToDigit – this UDP shall:

 Accept an ASCII character value in a register.

 Returns the numeric value related to the ASCII character value. For example, if

‘A’ (41h) or ‘a’ (61h) is passed in, then this procedure would return 10d.

 Return -1 if the ASCII character is not valid.

o DigitToAscii – this UDP shall:

 Accept a numeric value in a register.

 Returns the ASCII character value related to the numeric value. For example, if

15d is passed in, then this procedure would return ‘F’ or ‘f’ (you must choose one

case for letters).

 Return -1 if the numeric value is not valid.

o WriteInteger – this UDP shall:

 Accept a number in the EAX register.

 Accept a number base value in the BL register.

 Display the number in its base. For example, if 5 and 2 were passed in, this UDP

would display 101.

 Use the DigitToAscii procedure.

 Not display leading zeroes.

©2015, Regis University

o ReadInteger – this UDP shall:

 Accept a number base in the BL register.

 Read characters from the keyboard one character at a time until the user presses

the Enter key.

 The valid characters are ‘0’ – ‘9’, ‘a’ – ‘f’ and ‘A’ – ‘F’.

 Validate each character, as it is entered, to ensure it is a valid character for the

number base. For example, entry of ‘G’ for base 7 is invalid, but ‘6’ would be

valid.

 If a character is valid, display it on the screen.

 If a character is invalid, then do not display it.

 Maintain a running final value as each character is entered.

 For example, if a user chose base 7 and entered the digits 2, 6, 7, A and1:

o The 7 and A would be ignored leaving 2617.

o Your running value would consist of calculating the decimal

value of (2 * 7
2
) + (6 * 7

1
) + (1 * 7

0
) = 141.

 Uses the AsciiToDigit procedure.

 Not use an array.

 Return the result in the EAX register.

 Return 0 if no valid characters were entered.

o DisplayIntegers – this UDP shall:

 Accept a number in the EAX register.

 Use the WriteInteger procedure to display number in its Base 2, Base 8, Base 10

and Base 16 equivalents.

 Performs the following tasks in the main procedure:

o Prompts the user for a number base value.

o

o Uses the ReadInteger procedure to get the base value from the user.

 If the ReadInteger procedure call results in 0 then you will exit the program.

 If the ReadInteger procedure call results in a value outside of the range of 2-16,

then display an error message and prompt the user again.

o Prompts the user for a number.

o Uses the ReadInteger procedure to get the number from the user.

o Uses the WriteInteger procedure to display the user-entered number in its Base 2, Base 8,

Base 10 and Base 16 equivalents.

o Allows the user to enter another base/number combination.

 Is formatted and commented as required by the CS370 Coding and Documentation Standards.

 Does not use the .IF, .REPEAT, or .WHILE directives of MASM.

©2015, Regis University

Allowed Irvine Procedure Calls:

 Crlf

 ReadChar

 WriteChar

 WriteString

Sample Program Input and Output:

Enter base value (2 thru 16 or 0 to exit): 5

Enter a number in your chosen base: 1234

Base 2: 11000010

Base 8: 302

Base 10: 194

Base 16: C2

Enter base value (2 thru 16 or 0 to exit): 7

Enter a number in your chosen base: 1234

Base 2: 111010010

Base 8: 722

Base 10: 466

Base 16: 1D2

Enter base value (2 thru 16 or 0 to exit): 10

Enter a number in your chosen base: 1234

Base 2: 10011010010

Base 8: 2322

Base 10: 1234

Base 16: 4D2

Enter base value (2 thru 16 or 0 to exit): 16

Enter a number in your chosen base: 123abc

Base 2: 100100011101010111100

Base 8: 4435274

Base 10: 1194684

Base 16: 123ABC

Enter base value (2 thru 16 or 0 to exit): 0

Press any key to continue . . .

©2015, Regis University

Program Documentation

Create your program document which contains:

 Algorithms as pseudo-code (C++ structure, but does not have to strictly adhere to the syntax of

the language).

 A test plan and results. For an example of how to create your test plan, download the CS370

Sample Test Plan.

 A Unified Modeling Language (UML) Activity Diagram that shows how your program functions.

For an example of how to create your activity diagram, download the CS370 Sample Activity

Diagram.

Program Submission

Submit each of program documents to the Assignment 5 Dropbox.

Before submitting your program deliverables, you MUST name them as follows:

 Lastname-Assn5-Program.asm

 Lastname-Assn5-ProgramDocument.docx

For example:

 Jones-Assn5-Program.asm

Jones-Assn5-ProgramDocument.docx

©2015, Regis University

Grading

The following rubric will be used to grade your program.

Rating Category Exemplary Partially Proficient Basic

(needs work)

Not Demonstrated

Documentation Documentation is

well written, clearly

explains what the

code is

accomplishing.

Includes complete

and accurate file and

function headers, as

detailed in the CS370

coding standards,

along with additional

in-line comments at

all appropriate and

necessary locations.

Documentation

includes file header,

function headers, and

inline comments, but

may lack clarity or

details in some

instances, OR may

have violated some

minor details of the

CS370 coding

standards.

Documentation is

incomplete and/or

incorrect and/or

formatted incorrectly.

Violated significant

details of the CS370

coding standards or

the underlying

program intent.

Only a few (or no)

comments in

program.

Data Storage Constants used where

appropriate, correct

data types used for

variables. Constant,

variables defined

within correct

program scope.

Followed CS370

coding standards

naming conventions

and used descriptive

names for all

identifiers.

A few minor errors in

data declaration

scope, data typing or

assignment, or may

have violated some

minor details of the

CS370 coding

standards.

One or more major

errors,

or may have violated

significant details of

the CS370 coding

standards.

Constants not used,

identifier names are

not descriptive,

and/or there are

multiple errors in the

data types assigned.

Program Input

(and Input

Processing)

Reads data correctly,

correctly handling

multiple records per

line. Recognizes end

of line correctly.

Recognizes end of

file correctly,

whether the file

contains a newline on

the last line or not.

Last data line is

duplicated or not

read, but rest of lines

are handled correctly

OR other minor

issues in reading and

processing data.

Does not correctly

handle multiple

records per line, OR

major/many issues in

reading and

processing data.

Was not able to read

data from the file.

Program

Processing:

Calculations &

Logic

Individual

calculations and

summations

performed correctly.

Keeps track of counts

correctly.

All if statements

written correctly and

efficiently.

Problems with ONE

of the program

calculations and/or if

statement not written

correctly and

efficiently.

Multiple problems

with program

calculations or if

statements.

All calculations

incorrect.

©2015, Regis University

Display Output

All required screen

output is displayed

neatly in columns

under correct

headers.

Display pauses for

long files.

Problems with

display formatting or

pausing,

OR does not satisfy

one of the

requirements.

Multiple problems

with display output.

No display output

produced.

Assembly Language

Constructs

Demonstrates

understanding of

program structure,

control structures,

and file structure.

Appropriate use of

language with correct

parameter passing

and no global

variable usage.

Follows all of the

coding standards for

code usage.

Most parameters are

defined and passed

correctly with no

global variable

usage, but there are

minor errors (e.g.

parameter passed by

reference when it

should be passed by

value).

Multiple problems

with parameter

definition and/or

usage,

OR global variables

were used

OR

several major errors.

Does not demonstrate

any understanding or

program or

control/data

structures.

Most parameters

incorrectly defined or

passed.

Major coding

standard violations.

Modularity

(functional

breakdown)

Program is modular

in design (if

applicable, functions

with arguments, not

including main) and

all are logically

organized with

prototyping.

Each module

performs ONE well-

defined task and is

defined and called

correctly.

Program uses code

efficiently. The

program modules can

be easily modified

and/or reused with

minimal work.

Program is modular

in design and is

mostly logically

organized.

Most of program has

efficient use of code.

May be missing one

required function,

contain a module that

performs too many

tasks, or have one

function that is

incorrectly defined or

called.

Some of the program

modules can be

easily modified

and/or reused with

minimal work.

Program is modular

in design and some

parts are logically

organized.

Multiple problems

with parameter

definition and/or

usage.

Program has little

efficient use of code.

More than one

required function

missing, or multiple

problems with

module

definitions/calls.

Modules could not be

modified and/or

reused, without

substantial work.

Program is not

modular in design

and is not logically

organized.

Program has little

efficient use of code

and program

compactness.

The program

modules cannot be

easily modified

and/or debugged.

Readability/

Miscellaneous

Code is exceptionally

well organized and

very easy to follow

and has no issues.

Code is fairly easy to

read, but there are

some spacing,

indentation, and/or

other issues.

Code is readable only

by someone who

already knows what

it is supposed to be

doing and/or there

are substantial

spacing, indentation,

and/or other issues.

The code is poorly

organized and very

difficult to read

and/or

has other major

issues.

Test Plan Test plan includes

rationale and tests that

validate ALL logic.

Missing parts of

rationale or missing

tests of some logic.

Missing all rationale

and/or missing many

tests of the logic.

No test plan submitted.

©2015, Regis University

Activity Diagram Activity diagram

covers ALL logic.

Missing coverage of

some logic.

Missing coverage of the

majority of the logic.

No activity diagram

submitted.

Delivery Submitted on time Submitted 1-3 days

late

(3% deducted per

day late)

Submitted 4-7 days

late

Not submitted within

1 week of due date

